Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Proc Natl Acad Sci U S A ; 121(17): e2322332121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625948

ABSTRACT

Apolipoprotein AV (APOA5) lowers plasma triglyceride (TG) levels by binding to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppressing its capacity to inhibit lipoprotein lipase (LPL) catalytic activity and its ability to detach LPL from binding sites within capillaries. However, the sequences in APOA5 that are required for suppressing ANGPTL3/8 activity have never been defined. A clue to the identity of those sequences was the presence of severe hypertriglyceridemia in two patients harboring an APOA5 mutation that truncates APOA5 by 35 residues ("APOA5Δ35"). We found that wild-type (WT) human APOA5, but not APOA5Δ35, suppressed ANGPTL3/8's ability to inhibit LPL catalytic activity. To pursue that finding, we prepared a mutant mouse APOA5 protein lacking 40 C-terminal amino acids ("APOA5Δ40"). Mouse WT-APOA5, but not APOA5Δ40, suppressed ANGPTL3/8's capacity to inhibit LPL catalytic activity and sharply reduced plasma TG levels in mice. WT-APOA5, but not APOA5Δ40, increased intracapillary LPL levels and reduced plasma TG levels in Apoa5-/- mice (where TG levels are high and intravascular LPL levels are low). Also, WT-APOA5, but not APOA5Δ40, blocked the ability of ANGPTL3/8 to detach LPL from cultured cells. Finally, an antibody against a synthetic peptide corresponding to the last 26 amino acids of mouse APOA5 reduced intracapillary LPL levels and increased plasma TG levels in WT mice. We conclude that C-terminal sequences in APOA5 are crucial for suppressing ANGPTL3/8 activity in vitro and for regulating intracapillary LPL levels and plasma TG levels in vivo.


Subject(s)
Apolipoproteins , Lipoprotein Lipase , Mice , Humans , Animals , Angiopoietin-like Proteins/genetics , Angiopoietin-like Proteins/metabolism , Lipoprotein Lipase/metabolism , Angiopoietin-Like Protein 3 , Amino Acids , Triglycerides/metabolism , Apolipoprotein A-V/genetics
2.
AAPS J ; 26(3): 41, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570436

ABSTRACT

Small interfering RNA (siRNA) is gaining momentum as a therapeutic modality with six approved products. Since siRNA has the potential to elicit undesired immune responses in patients, immunogenicity assessment is required during clinical development by regulatory authorities. In this study, anti-siRNA polyclonal antibodies were generated through animal immunization. These cross-reactive polyclonal antibodies recognized mostly the N-acetylgalactosamine (GalNAc) moiety with a small fraction against sequence-independent epitopes. We demonstrate that the polyclonal antibodies can be utilized as immunogenicity assay positive controls for the same class of GalNAc-conjugated siRNAs. In addition, anti-GalNAc mAbs showed desired sensitivity and drug tolerance, supporting their use as alternative surrogate positive controls. These findings can guide positive control selection and immunogenicity assay development for GalNAc-conjugated siRNAs and other oligonucleotide therapeutics.


Subject(s)
Acetylgalactosamine , Oligonucleotides , Animals , Humans , RNA, Small Interfering/genetics , Antibodies, Monoclonal
3.
Curr Opin Lipidol ; 35(2): 58-65, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37962908

ABSTRACT

PURPOSE OF REVIEW: The angiopoietin-like (ANGPTL) proteins ANGPTL3 and ANGPTL4 are critical lipoprotein lipase (LPL) inhibitors. This review discusses the unique ability of the insulin-responsive protein ANGPTL8 to regulate triglyceride (TG) metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that control tissue-specific LPL activities. RECENT FINDINGS: After feeding, ANGPTL4/8 acts locally in adipose tissue, has decreased LPL-inhibitory activity compared to ANGPTL4, and binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin, which cleaves ANGPTL4/8 and other LPL inhibitors. This enables LPL to be fully active postprandially to promote efficient fatty acid (FA) uptake and minimize ectopic fat deposition. In contrast, liver-derived ANGPTL3/8 acts in an endocrine manner, has markedly increased LPL-inhibitory activity compared to ANGPTL3, and potently inhibits LPL in oxidative tissues to direct TG toward adipose tissue for storage. Circulating ANGPTL3/8 levels are strongly correlated with serum TG, and the ANGPTL3/8 LPL-inhibitory epitope is blocked by the TG-lowering protein apolipoprotein A5 (ApoA5). SUMMARY: ANGPTL8 plays a crucial role in TG metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that differentially modulate LPL activities in oxidative and adipose tissues respectively. Selective ANGPTL8 inhibition in the context of the ANGPTL3/8 complex has the potential to be a promising strategy for treating dyslipidemia.


Subject(s)
Angiopoietin-Like Protein 8 , Peptide Hormones , Humans , Angiopoietin-like Proteins/metabolism , Tissue Plasminogen Activator/metabolism , Biological Transport , Lipoprotein Lipase/metabolism , Triglycerides/metabolism , Angiopoietin-Like Protein 3 , Peptide Hormones/metabolism
4.
J Lipid Res ; 65(2): 100495, 2024 02.
Article in English | MEDLINE | ID: mdl-38160757

ABSTRACT

Angiopoietin-like protein (ANGPTL) complexes 3/8 and 4/8 are established inhibitors of LPL and novel therapeutic targets for dyslipidemia. However, the effects of regular exercise on ANGPTL3/8 and ANGPTL4/8 are unknown. We characterized ANGPTL3/8 and ANGPTL4/8 and their relationship with in vivo measurements of lipase activities and cardiometabolic traits before and after a 5-month endurance exercise training intervention in 642 adults from the HERITAGE (HEalth, RIsk factors, exercise Training And GEnetics) Family Study. At baseline, higher levels of both ANGPTL3/8 and ANGPTL4/8 were associated with a worse lipid, lipoprotein, and cardiometabolic profile, with only ANGPTL3/8 associated with postheparin LPL and HL activities. ANGPTL3/8 significantly decreased with exercise training, which corresponded with increases in LPL activity and decreases in HL activity, plasma triglycerides, apoB, visceral fat, and fasting insulin (all P < 5.1 × 10-4). Exercise-induced changes in ANGPTL4/8 were directly correlated to concomitant changes in total cholesterol, LDL-C, apoB, and HDL-triglycerides and inversely related to change in insulin sensitivity index (all P < 7.0 × 10-4). In conclusion, exercise-induced decreases in ANGPTL3/8 and ANGPTL4/8 were related to concomitant improvements in lipase activity, lipid profile, and cardiometabolic risk factors. These findings reveal the ANGPTL3-4-8 model as a potential molecular mechanism contributing to adaptations in lipid metabolism in response to exercise training.


Subject(s)
Angiopoietin-Like Protein 3 , Cardiovascular Diseases , Adult , Humans , Angiopoietin-like Proteins/metabolism , Triglycerides/metabolism , Lipase , Exercise , Apolipoproteins B , Lipoprotein Lipase/genetics , Angiopoietin-Like Protein 4
5.
J Immunol Methods ; 523: 113575, 2023 12.
Article in English | MEDLINE | ID: mdl-37844794

ABSTRACT

Biotherapeutics have the potential to trigger undesired immune responses in the patients. For therapeutic proteins, immunogenicity is manifested as anti-drug antibodies (ADA). Because ADA could compromise pharmacokinetics, efficacy, and safety, regulatory agencies require immunogenicity assessment during clinical development. A tiered bioanalytical approach is recommended to monitor clinical immunogenicity, and neutralizing antibodies (NAb) are studied in Tier 4 if the molecule is immunogenic. Although cell-based assays, which reflect the pharmacological mechanism of action, are in some cases the preferred assay format for detecting NAbs, they are associated with operational complexity and sometimes suboptimal assay performance. Alternatively, non-cell-based assays have also been developed and implemented. In our current study, a competitive ligand binding assay (CLBA) was developed to detect NAbs for insulin efsitora alfa (efsitora, basal insulin Fc, LY3209590), a novel fusion protein being studied for the treatment of Type 1 diabetes and Type 2 diabetes. The CLBA demonstrated acceptable sensitivity, drug tolerance, precision, and robustness, and thus provides a suitable approach for detecting NAbs against efsitora.


Subject(s)
Antibodies, Neutralizing , Diabetes Mellitus, Type 2 , Humans , Insulin , Ligands , Drug Tolerance , Binding, Competitive
6.
J Clin Invest ; 133(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37824203

ABSTRACT

Why apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia has remained unclear, but we have suspected that the underlying cause is reduced amounts of lipoprotein lipase (LPL) in capillaries. By routine immunohistochemistry, we observed reduced LPL staining of heart and brown adipose tissue (BAT) capillaries in Apoa5-/- mice. Also, after an intravenous injection of LPL-, CD31-, and GPIHBP1-specific mAbs, the binding of LPL Abs to heart and BAT capillaries (relative to CD31 or GPIHBP1 Abs) was reduced in Apoa5-/- mice. LPL levels in the postheparin plasma were also lower in Apoa5-/- mice. We suspected that a recent biochemical observation - that APOA5 binds to the ANGPTL3/8 complex and suppresses its capacity to inhibit LPL catalytic activity - could be related to the low intracapillary LPL levels in Apoa5-/- mice. We showed that an ANGPTL3/8-specific mAb (IBA490) and APOA5 normalized plasma triglyceride (TG) levels and intracapillary LPL levels in Apoa5-/- mice. We also showed that ANGPTL3/8 detached LPL from heparan sulfate proteoglycans and GPIHBP1 on the surface of cells and that the LPL detachment was blocked by IBA490 and APOA5. Our studies explain the hypertriglyceridemia in Apoa5-/- mice and further illuminate the molecular mechanisms that regulate plasma TG metabolism.


Subject(s)
Apolipoprotein A-V , Hypertriglyceridemia , Receptors, Lipoprotein , Animals , Mice , Capillaries/metabolism , Hypertriglyceridemia/genetics , Hypertriglyceridemia/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/metabolism , Triglycerides/blood , Apolipoprotein A-V/genetics
8.
J Lipid Res ; 64(10): 100441, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37666362

ABSTRACT

After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain-containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur.

9.
J Appl Lab Med ; 8(5): 896-908, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37473444

ABSTRACT

BACKGROUND: Rheumatoid factor (RF) consists of autoantibodies that bind the fragment crystallizable (Fc) region of human immunoglobulin G (IgG) and present in sera of rheumatoid arthritis (RA) patients. Immunoassays to detect antidrug antibodies (ADA) in RA patient samples may experience interference due to RF binding and crosslinking Fc regions of the capture and detection antibody reagents. To overcome this interference, a novel Fab affinity-capture and elution (ACE)-bridging immunoassay (Fab ACE-Bridge) was developed with monovalent-recombinant Fab to avoid RF interference. METHODS: ACE and ACE-Bridge assays were developed to detect ADA against a therapeutic monoclonal antibody using samples from healthy donors, psoriasis patients, and RA patients. The performance of these assays was compared to a novel Fab ACE-Bridge assay, in which monoclonal antibody was replaced with monovalent Fab. RESULTS: High screening signals in the ACE and ACE-Bridge assays were detected in RA patient samples but not in samples from healthy donors or psoriasis patients. The high screening signals in RA samples did not inhibit to the expected extent in the confirmatory assay, a consistent feature of false-positive screening results. Further investigation revealed RF as the interferent affecting assay performance. Modification of the ACE-Bridge assay by using monovalent Fab eliminated RF interference while allowing for sensitive and drug-tolerant detection of authentic ADA. CONCLUSIONS: RF interfered significantly in traditional ACE and ACE-Bridge assays. Implementation of a novel monovalent Fab ACE-Bridge assay overcame RF interference. The use of monovalent Fab is recommended for immunogenicity assays when assessing ADA in RA patient samples.


Subject(s)
Arthritis, Rheumatoid , Rheumatoid Factor , Humans , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Immunoassay/methods , Immunoglobulin G , Antibodies, Monoclonal
10.
Eur Heart J ; 44(25): 2335-2345, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37155355

ABSTRACT

AIMS: Apolipoprotein C-II (ApoC-II) is thought to activate lipoprotein lipase (LPL) and is therefore a possible target for treating hypertriglyceridemia. Its relationship with cardiovascular risk has not been investigated in large-scale epidemiologic studies, particularly allowing for apolipoprotein C-III (ApoC-III), an LPL antagonist. Furthermore, the exact mechanism of ApoC-II-mediated LPL activation is unclear. METHODS AND RESULTS: ApoC-II was measured in 3141 LURIC participants of which 590 died from cardiovascular diseases during a median (inter-quartile range) follow-up of 9.9 (8.7-10.7) years. Apolipoprotein C-II-mediated activation of the glycosylphosphatidylinositol high-density lipoprotein binding protein 1 (GPIHBP1)-LPL complex was studied using enzymatic activity assays with fluorometric lipase and very low-density lipoprotein (VLDL) substrates. The mean ApoC-II concentration was 4.5 (2.4) mg/dL. The relationship of ApoC-II quintiles with cardiovascular mortality exhibited a trend toward an inverse J-shape, with the highest risk in the first (lowest) quintile and lowest risk in the middle quintile. Compared with the first quintile, all other quintiles were associated with decreased cardiovascular mortality after multivariate adjustments including ApoC-III as a covariate (all P < 0.05). In experiments using fluorometric substrate-based lipase assays, there was a bell-shaped relationship for the effect of ApoC-II on GPIHBP1-LPL activity when exogenous ApoC-II was added. In ApoC-II-containing VLDL substrate-based lipase assays, GPIHBP1-LPL enzymatic activity was almost completely blocked by a neutralizing anti-ApoC-II antibody. CONCLUSION: The present epidemiologic data suggest that increasing low circulating ApoC-II levels may reduce cardiovascular risk. This conclusion is supported by the observation that optimal ApoC-II concentrations are required for maximal GPIHBP1-LPL enzymatic activity.


Subject(s)
Cardiovascular Diseases , Lipoprotein Lipase , Humans , Apolipoprotein C-III , Lipase , Lipoprotein Lipase/metabolism , Lipoproteins, VLDL/metabolism , Triglycerides/metabolism , Apolipoprotein C-II
11.
Proc Natl Acad Sci U S A ; 120(7): e2214081120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36763533

ABSTRACT

Triglyceride (TG) metabolism is highly regulated by angiopoietin-like protein (ANGPTL) family members [Y. Q. Chen et al., J. Lipid Res. 61, 1203-1220 (2020)]. During feeding, ANGPTL8 forms complexes with the fibrinogen-like domain-containing protein ANGPTL4 in adipose tissue to decrease ANGPTL3/8- and ANGPTL4-mediated lipoprotein lipase (LPL)-inhibitory activity and promote TG hydrolysis and fatty acid (FA) uptake. The ANGPTL4/8 complex, however, tightly binds LPL and partially inhibits it in vitro. To try to reconcile the in vivo and in vitro data on ANGPTL4/8, we aimed to find novel binding partners of ANGPTL4/8. To that end, we performed pulldown experiments and found that ANGPTL4/8 bound both tissue plasminogen activator (tPA) and plasminogen, the precursor of the fibrinolytic enzyme plasmin. Remarkably, ANGPTL4/8 enhanced tPA activation of plasminogen to generate plasmin in a manner like that observed with fibrin, while minimal plasmin generation was observed with ANGPTL4 alone. The addition of tPA and plasminogen to LPL-bound ANGPTL4/8 caused rapid, complete ANGPTL4/8 cleavage and increased LPL activity. Restoration of LPL activity in the presence of ANGPTL4/8 was also achieved with plasmin but was blocked when catalytically inactive plasminogen (S760A) was added to tPA or when plasminogen activator inhibitor-1 was added to tPA + plasminogen, indicating that conversion of plasminogen to plasmin was essential. Together, these results suggest that LPL-bound ANGPTL4/8 mimics fibrin to recruit tPA and plasminogen to generate plasmin, which then cleaves ANGPTL4/8, enabling LPL activity to be increased. Our observations thus reveal a unique link between the ANGPTL4/8 complex and plasmin generation.


Subject(s)
Angiopoietin-Like Protein 4 , Angiopoietin-Like Protein 8 , Fibrinolysin , Lipoprotein Lipase , Plasminogen , Lipoprotein Lipase/metabolism , Serine Proteases , Tissue Plasminogen Activator , Triglycerides/metabolism , Humans
12.
J Immunol Methods ; 512: 113397, 2023 01.
Article in English | MEDLINE | ID: mdl-36481208

ABSTRACT

Adeno-associated virus (AAV) based gene therapies are gaining significant momentum as a novel therapeutic modality. However, a yet unsolved concern for using AAV as a vector is the high potential to elicit humoral and cellular responses, which are often exacerbated by pre-existing immunity due to exposure to wild type AAV. Therefore, characterization of pre-existing and treatment emergent anti-AAV antibodies is of great importance to the development of AAV based gene therapies. In this project, a sensitive and drug tolerant total antibody (TAb) assay was developed using recombinant AAV9-GFP (green fluorescent protein) as a surrogate AAV9. The assay format was affinity capture and elution (ACE) with ruthenium labeled AAV9-GFP as detection. Upon evaluation, three commercial anti-AAV9 monoclonal antibodies (clones HI17, HI35, and HL2374) were chosen and mixed at equal concentrations as positive control material. The assay sensitivity was estimated to be 11.2 ng/mL. Drug tolerance was estimated to be 5.4 × 10E10 DRP/mL AAV9-GFP at 100 ng/mL anti-AAV9 antibodies and to be at least 1 × 10E11 DRP/mL at 500 ng/mL and 250 ng/mL anti-AAV9 antibodies. The assay showed desirable specificity and precision. Using this TAb assay, significant pre-existing antibodies were detected from normal human sera.


Subject(s)
Dependovirus , Genetic Therapy , Humans , Dependovirus/genetics , Green Fluorescent Proteins/genetics , Antibodies, Monoclonal/genetics , Genetic Vectors/genetics
13.
Bioanalysis ; 14(18): 1229-1239, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36378599

ABSTRACT

Background & Aim: Oxyntomodulin (Oxm) is a proglucagon-derived peptide agonist of both the GLP-1 and glucagon receptors and is a key regulator of gastric acid secretion and energy expenditure. Differential processing from proglucagon hinders assay immunoassay selectivity. Method & results: Antibody engineering was used to develop a sandwich immunoassay that selectively measures endogenous Oxm. The pre- and postprandial levels of Oxm from 19 healthy individuals over the course of 2 h were measured. Postprandial increases in Oxm occurred within minutes and levels significantly correlated with those obtained using previously published mass spectrometry assays. Conclusion: This sandwich immunoassay is appropriately sensitive and selective and is also amenable to high-throughput application for the reliable determination of endogenous levels of intact Oxm from human samples.


Subject(s)
Antibodies, Monoclonal , Oxyntomodulin , Humans , Proglucagon , Glucagon , Protein Precursors/analysis , Glucagon-Like Peptide 1 , Immunoassay
14.
Adv Biol (Weinh) ; 6(10): e2200093, 2022 10.
Article in English | MEDLINE | ID: mdl-35676229

ABSTRACT

Triacylglycerol (TG) metabolism is tightly regulated to maintain a pool of TG within circulating lipoproteins that can be hydrolyzed in a tissue-specific manner by lipoprotein lipase (LPL) to enable the delivery of fatty acids to adipose or oxidative tissues as needed. Elevated serum TG concentrations, which result from a deficiency of LPL activity or, more commonly, an imbalance in the regulation of tissue-specific LPL activities, have been associated with an increased risk of atherosclerotic cardiovascular disease through multiple studies. Among the most critical LPL regulators are the angiopoietin-like (ANGPTL) proteins ANGPTL3, ANGPTL4, and ANGPTL8, and a number of different apolipoproteins including apolipoprotein A5 (ApoA5), apolipoprotein C2 (ApoC2), and apolipoprotein C3 (ApoC3). These ANGPTLs and apolipoproteins work together to orchestrate LPL activity and therefore play pivotal roles in TG partitioning, hydrolysis, and utilization. This review summarizes the mechanisms of action, epidemiological findings, and genetic data most relevant to these ANGPTLs and apolipoproteins. The interplay between these important regulators of TG metabolism in both fasted and fed states is highlighted with a holistic view toward understanding key concepts and interactions. Strategies for developing safe and effective therapeutics to reduce circulating TG by selectively targeting these ANGPTLs and apolipoproteins are also discussed.


Subject(s)
Angiopoietins , Lipoprotein Lipase , Lipoprotein Lipase/genetics , Angiopoietin-like Proteins/metabolism , Apolipoprotein A-V , Apolipoprotein C-II , Triglycerides , Angiopoietins/genetics , Lipoproteins , Apolipoproteins , Fatty Acids
15.
J Lipid Res ; 63(5): 100198, 2022 05.
Article in English | MEDLINE | ID: mdl-35307397

ABSTRACT

Triglycerides (TG) are required for fatty acid transport and storage and are essential for human health. Angiopoietin-like-protein 8 (ANGPTL8) has previously been shown to form a complex with ANGPTL3 that increases circulating TG by potently inhibiting LPL. We also recently showed that the TG-lowering apolipoprotein A5 (ApoA5) decreases TG levels by suppressing ANGPTL3/8-mediated LPL inhibition. To understand how LPL binds ANGPTL3/8 and ApoA5 blocks this interaction, we used hydrogen-deuterium exchange mass-spectrometry and molecular modeling to map binding sites of LPL and ApoA5 on ANGPTL3/8. Remarkably, we found that LPL and ApoA5 both bound a unique ANGPTL3/8 epitope consisting of N-terminal regions of ANGPTL3 and ANGPTL8 that are unmasked upon formation of the ANGPTL3/8 complex. We further used ANGPTL3/8 as an immunogen to develop an antibody targeting this same epitope. After refocusing on antibodies that bound ANGPTL3/8, as opposed to ANGPTL3 or ANGPTL8 alone, we utilized bio-layer interferometry to select an antibody exhibiting high-affinity binding to the desired epitope. We revealed an ANGPTL3/8 leucine zipper-like motif within the anti-ANGPTL3/8 epitope, the LPL-inhibitory region, and the ApoA5-interacting region, suggesting the mechanism by which ApoA5 lowers TG is via competition with LPL for the same ANGPTL3/8-binding site. Supporting this hypothesis, we demonstrate that the anti-ANGPTL3/8 antibody potently blocked ANGPTL3/8-mediated LPL inhibition in vitro and dramatically lowered TG levels in vivo. Together, these data show that an anti-ANGPTL3/8 antibody targeting the same leucine zipper-containing epitope recognized by LPL and ApoA5 markedly decreases TG by suppressing ANGPTL3/8-mediated LPL inhibition.


Subject(s)
Lipoprotein Lipase , Peptide Hormones , Angiopoietin-Like Protein 3 , Angiopoietin-Like Protein 8 , Angiopoietin-like Proteins/metabolism , Apolipoprotein A-V , Epitopes , Humans , Leucine Zippers , Lipoprotein Lipase/metabolism , Peptide Hormones/metabolism , Triglycerides/metabolism
16.
Curr Opin Lipidol ; 33(1): 39-46, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34789669

ABSTRACT

PURPOSE OF REVIEW: Over the last two decades, evolving discoveries around angiopoietin-like (ANGPTL) proteins, particularly ANGPTL3, ANGPTL4, and ANGPTL8, have generated significant interest in understanding their roles in fatty acid (FA) metabolism. Until recently, exactly how this protein family regulates lipoprotein lipase (LPL) in a tissue-specific manner to control FA partitioning has remained elusive. This review summarizes the latest insights into mechanisms by which ANGPTL3/4/8 proteins regulate postprandial FA partitioning. RECENT FINDINGS: Accumulating evidence suggests that ANGPTL8 is an insulin-responsive protein that regulates ANGPTL3 and ANGPTL4 by forming complexes with them to increase or decrease markedly their respective LPL-inhibitory activities. After feeding, when insulin levels are high, ANGPTL3/8 secreted by hepatocytes acts in an endocrine manner to inhibit LPL in skeletal muscle, whereas ANGPTL4/8 secreted by adipocytes acts locally to preserve adipose tissue LPL activity, thus shifting FA toward the fat for storage. Insulin also decreases hepatic secretion of the endogenous ANGPTL3/8 inhibitor, apolipoprotein A5 (ApoA5), to accentuate ANGPTL3/8-mediated LPL inhibition in skeletal muscle. SUMMARY: The ANGPTL3/4/8 protein family and ApoA5 play critical roles in directing FA toward adipose tissue postprandially. Selective targeting of these proteins holds significant promise for the treatment of dyslipidemias, metabolic syndrome, and their related comorbidities.


Subject(s)
Insulins , Peptide Hormones , Angiopoietin-Like Protein 3 , Angiopoietin-Like Protein 8 , Angiopoietin-like Proteins/genetics , Angiopoietin-like Proteins/metabolism , Angiopoietins/genetics , Angiopoietins/metabolism , Fatty Acids , Humans , Insulins/metabolism , Lipid Metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Peptide Hormones/metabolism , Postprandial Period
17.
JAMA Dermatol ; 157(11): 1306-1315, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34643650

ABSTRACT

IMPORTANCE: Psoriasis relapse may involve compensatory T-cell activation pathways in the presence of CD28-CD80/CD86 blockade with abatacept. OBJECTIVE: To determine whether costimulatory signaling blockade with abatacept prevents psoriasis relapse after ustekinumab withdrawal. DESIGN, SETTING, AND PARTICIPANTS: Psoriasis Treatment with Abatacept and Ustekinumab: a Study of Efficacy (PAUSE), a parallel-design, double-blind, placebo-controlled randomized clinical trial, was conducted at 10 sites in the US and Canada. Participant enrollment opened on March 19, 2014, and concluded on April 11, 2016. Participants were adults with moderate to severe plaque psoriasis and received ustekinumab in a lead-in phase. Those who responded to ustekinumab at week 12 were randomized 1:1 to either the continued with ustekinumab group (ustekinumab group) or the switched to abatacept group (abatacept group). Treatment was discontinued at week 39, and participants were followed up for psoriasis relapse until week 88. Statistical analyses were performed in the intention-to-treat (ITT) and safety samples from May 3, 2018, to July 6, 2021. INTERVENTIONS: Participants received subcutaneous ustekinumab at weeks 0 and 4 (45 mg per dose for those ≤100 kg; 90 mg per dose for those >100 kg). Participants randomized to the abatacept group at week 12 received subcutaneous abatacept, 125 mg weekly, from weeks 12 to 39 and ustekinumab placebo at weeks 16 and 28. Participants randomized to the ustekinumab group received ustekinumab at weeks 16 and 28 and abatacept placebo weekly from weeks 12 to 39. MAIN OUTCOMES AND MEASURES: The primary end point was the proportion of participants with psoriasis relapse (loss of ≥50% of the initial Psoriasis Area and Severity Index improvement) between weeks 12 and 88. Secondary end points included time to psoriasis relapse, proportion of participants with psoriasis relapse between weeks 12 and 40, and adverse events. The psoriasis transcriptome and serum cytokines were evaluated. RESULTS: A total of 108 participants (mean [SD] age, 46.1 [12.1] years; 73 [67.6%] men) were treated with open-label ustekinumab; 91 were randomized to blinded treatment. Similar proportions of participants in the abatacept group and the ustekinumab group relapsed between weeks 12 and 88 (41 of 45 [91.1%] vs 40 of 46 [87.0%]; P = .41). Median time to relapse from the last dose of ustekinumab was similar between groups as well: 36 weeks (95% CI, 36-48 weeks) in the abatacept group vs 32 weeks (95% CI, 28-40 weeks) in the ustekinumab group. Similar numbers and rates of adverse events occurred. Abatacept did not maintain suppression of the pathogenic IL-23-mediated psoriasis molecular signature in lesions after ustekinumab withdrawal, and serum IL-19 levels increased. CONCLUSIONS AND RELEVANCE: This parallel-design, double-blind randomized clinical trial found that abatacept did not prevent psoriasis relapse that occurred after ustekinumab withdrawal because it did not completely block the pathogenic psoriasis molecular pathways that led to relapse. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01999868.


Subject(s)
Psoriasis , Ustekinumab , Abatacept/adverse effects , Adult , Double-Blind Method , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Psoriasis/chemically induced , Psoriasis/drug therapy , Severity of Illness Index , Treatment Outcome , Ustekinumab/therapeutic use
18.
Heliyon ; 7(9): e07898, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34504977

ABSTRACT

We previously demonstrated that angiopoietin-like protein 8 (ANGPTL8) forms ANGPTL3/8 and ANGPTL4/8 complexes that increase with feeding to direct fatty acids (FA) toward adipose tissue through differential modulation of lipoprotein lipase (LPL) activity. Each complex correlated inversely with high density lipoprotein cholesterol (HDL) in control subjects. We thus investigated ANGPTL3/8 and ANGPTL4/8 levels in type 2 diabetes patients, who can present with decreased HDL. While ANGPTL3/8 levels in type 2 diabetes patients were similar to those previously observed in normal controls, ANGPTL4/8 levels were roughly twice as high as those in control subjects. Concentrations of ANGPTL3/8 and ANGPTL4/8 in type 2 diabetes patients were inversely correlated with HDL, with the correlation being significant for ANGPTL4/8. We therefore measured the ability of the various ANGPTL proteins and complexes to inhibit endothelial lipase (EL), the enzyme which hydrolyzes phospholipids (PL) in HDL. While confirming ANGPTL3 as an EL inhibitor, we found that ANGPTL4 was a more potent EL inhibitor than ANGPTL3. Interestingly, we observed that while ANGPTL3/8 had increased EL-inhibitory activity compared to ANGPTL3 alone, ANGPTL4/8 exhibited decreased potency in inhibiting EL compared to ANGPTL4 alone. Together, these results show for the first time that ANGPTL4 is a more potent EL inhibitor than ANGPTL3 and suggest a possible reason for why ANGPTL4/8 levels are correlated inversely with HDL.

19.
Bioanalysis ; 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34289719

ABSTRACT

Aim: We present a novel methodology to compare results between distinct immunogenicity assays, performed by two laboratories, for the same biotherapeutic. Materials & methods: Human serum pools from clinical trials were generated to provide representative immunogenicity titers. Pools were evaluated at two laboratories in a blinded fashion to assess the effect of assay format and laboratory change on clinical interpretation of immunogenicity results. Results: The laboratories validated two different assay formats and demonstrated comparable sensitivity and drug tolerance. Overall, the comparisons in assay format and laboratory ensured a comparable ability to detect treatment-emergent antidrug antibodies for a biotherapeutic. Conclusion: We have established an approach, using pooling of patient samples, that allows for the interlaboratory comparisons without creating duplicative results.


Lay abstract Measuring immunogenicity, an immune response to a drug, is important in understanding the benefits and risks associated with a drug. Immunogenicity is measured by specific tests within a laboratory; however, these tests and laboratories may change over time. This paper proposes a method to determine if a change in test and laboratory will impact the interpretation of immunogenicity for a drug. Blood samples from clinical trial patients were combined in order to provide representative samples for the immunogenicity tests. The samples were tested at two laboratories with two tests to measure if any interpretation of immunogenicity results would change due to the different tests and laboratories. Laboratories and tests demonstrated similar and reliable results of the samples. This study has established a method which allows for the comparison of immunogenicity results when tests and/or laboratories are changed.

20.
J Lipid Res ; 62: 100068, 2021.
Article in English | MEDLINE | ID: mdl-33762177

ABSTRACT

Triglyceride (TG) molecules represent the major storage form of fatty acids, and TG metabolism is essential to human health. However, the mechanistic details surrounding TG metabolism are complex and incompletely elucidated. Although it is known that angiopoietin-like protein 8 (ANGPTL8) increases TGs through an ANGPTL3/8 complex that inhibits LPL, the mechanism governing ApoA5, which lowers TGs, has remained elusive. Current hypotheses for how ApoA5 acts include direct stimulation of LPL, facilitation of TG-containing particle uptake, and regulation of hepatic TG secretion. Using immunoprecipitation-MS and Western blotting, biolayer interferometry, functional LPL enzymatic assays, and kinetic analyses of LPL activity, we show that ApoA5 associates with ANGPTL3/8 in human serum and most likely decreases TG by suppressing ANGPTL3/8-mediated LPL inhibition. We also demonstrate that ApoA5 has no direct effect on LPL, nor does it suppress the LPL-inhibitory activities of ANGPTL3, ANGPTL4, or ANGPTL4/8. Importantly, ApoA5 suppression of ANGPTL3/8-mediated LPL inhibition occurred at a molar ratio consistent with the circulating concentrations of ApoA5 and ANGPTL3/8. Because liver X receptor (LXR) agonists decrease ApoA5 expression and cause hypertriglyceridemia, we investigated the effect of the prototypical LXR agonist T0901317 on human primary hepatocytes. We observed that T0901317 modestly stimulated hepatocyte ApoA5 release, but markedly stimulated ANGPTL3/8 secretion. Interestingly, the addition of insulin to T0901317 attenuated ApoA5 secretion, but further increased ANGPTL3/8 secretion. Together, these results reveal a novel intersection of ApoA5 and ANGPTL3/8 in the regulation of TG metabolism and provide a possible explanation for LXR agonist-induced hypertriglyceridemia.


Subject(s)
Angiopoietin-Like Protein 8
SELECTION OF CITATIONS
SEARCH DETAIL
...